

The Mass Spectrometer as a Laboratory

Prof. Dr. Christoph A. Schalley FU Berlin

The Dark Side (... of Analytical Chemistry)

The General Setup of a Mass Spectrometer

mass spectrometers are operated at pressures $< 10^{-8}$ mbar

exceptions: EI ion source (10^{-5} mbar), CI ion source (10^{-3} mbar), ESI ion source (1 bar) collision cells (10^{-5} mbar)

Pressure Table

Pressure Conversion Table and Vacuum Terminology						mean free path between
	Unit	Pascal	bar	millibar	Torr	collisions
Vacuum Quality	Symbol	Pa	bar	mbar	Torr	
Rough Vacuum	Р	1,0E+05	1,000	1000,000	751,9	50 nm
	r	1,0E+04	0,100	100,000	75,2	
	e	1,0E+03	0,010	10,000	7,5	
Medium Vacuum	s	1,0E+02	0,001	1,000	0,752	50 µm
	s	1,0E+01	1,0E-04	0,100	0,075	· ·
	u	1,0E+00	1,0E-05	0,010	7,5E-03	
High Vacuum	r r	1,0E-01	1,0E-06	1,0E-03	7,5E-04	50 mm
	e	1,0E-02	1,0E-07	1,0E-04	7,5E-05	
		1,0E-03	1,0E-08	1,0E-05	7,5E-06	
		1,0E-04	1,0E-09	1,0E-06	7,5E-07	50 m
Ultrahigh Vacuum		1,0E-05	1,0E-10	1,0E-07	7,5E-08	
		1,0E-06	1,0E-11	1,0E-08	7,5E-09	
		1,0E-07	1,0E-12	1,0E-09	7,5E-10	50 km
		1,0E-08	1,0E-13	1,0E-10	7,5E-11	
		1,0E-09	1,0E-14	1,0E-11	7,5E-12	
		par = 1000 mbar : seful ranges are in		33 Pa; 1 psi = 6895	Pa = 68.95 mbar.	

Mass Definitions and Mass Defect

relative mass: weighted average over all isotopes of each element summed up for

the elemental composition

nominal mass: calculated using the rounded mass of the most abundant isotope of

each element

isotopic mass: exact mass of a certain isotope

monoisotopic mass: exact mass of most abundant isotope is used for every element

exact mass: difference to monoisotopic mass is the electron mass (0.000548 amu)

most abundant mass: mass of the most intense signal in the isotope pattern

mass defect: binding energy of elementary particles in nucleus causes a relativistic

mass defect which is large enough to be measured

NON!

Periodic Table of Isotope Patterns

Isotope Pattern Analysis

number of visible isotope peaks depends on resolution of instrument

here: 7 visible isotope peaks in low res, 22 in high res mode

Information Content of Mass Spectra

primary information: mass-to-charge ratio and intensity of any ions formed

secondary information:

- elemental composition (from exact mass through mass defect and from isotope patterns)
- stoichiometries of non-covalent complexes (warning: unspecific aggregation is possible)
- structural information from fragments appearing in the mass spectra (warning: determining which signals are fragments and which are impurities sometime difficult)
- reactivity information (in solution as well as in the gas phase)

mass spectrometers are multichannel detectors able to identify components in complex mixtures (each m/z is one channel)

Tandem MS and Gas-Phase Chemistry

compare a reaction in the lab with a tandem mass spectrometric experiment:

what is so interesting about gas-phase chemistry?

extremely precisely controlled experimental conditions: minimal systems can be studied to unravel underlying principles (e.g. the mechanisms of catalytic reactions)

in high vacuum inside a mass spectrometer, ions are isolated (environment-free conditions) tandem MS monitors intrinsic properties comparison with solution properties allows to determine the effects of the environment

Understanding Mass Spectrometry

Basics

Ionization Processes
Gaseous Ion Energetics
Time Scales
Isotope Distributions
etc.

Technical Realization

Sample Inlets
Ion Sources
Vacuum Technology
Mass Analyzers
Detectors
GC/LC-MS Coupled Techniques

Mass Spectrometry Gas-Phase Chemistry

Applications

Sample Identification Quantification Gas-Phase Chemistry Mechanistic Studies Proteomics etc.

Interpretation of Mass Spectra

Fragmentation Channels Characteristic Ions Characteristic Fragmentation Reactions etc.